Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Archives of the Balkan Medical Union ; 57(3):295-300, 2022.
Article in English | EMBASE | ID: covidwho-2264164

ABSTRACT

Introduction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to a family of ribonucleic acid (RNA) viruses, causing novel coronavirus disease 2019 (COVID-19). Because of a global inflammatory response and endothelial damage, COVID-19 may predispose to coagulation disorders and severe thrombotic events. Case presentation. A 62-year-old man patient was admitted for COVID-19 pneumonia and abdominal pain for 10 days. Because of the rapid deterioration of the clinical status, shock and evidence of peritoneal irritation, the patient was consulted by a surgeon. The native spiral computed tomography (CT) of the abdomen detected enlarged colon filled with air collections and hydro-aeric levels. The surgical intervention revealed diffuse peritonitis with necrosis of the distal ileum secondary to mesenteric thrombosis. A partial resection of the ileum was done. The histological examination showed an infarcted small bowel, with hemorrhage, vascular thrombosis, and signs of necrotizing endovasculitis. Conclusions. SARS-CoV-2 binds to ACE2 receptor, which results in increased signalling by thrombin receptors on platelet and endothelial cells, leading to coagulopathy. In older patients presenting with abdominal pain, shock and peritonitis, the most common underlying cause is mesenteric thrombosis which could be a complication of COVID-19.Copyright © 2022 Balkan Medical Union.

2.
J Clin Med ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: covidwho-2281222

ABSTRACT

Severe novel coronavirus disease 2019 (COVID-19) patients have a high incidence of thrombotic complications and mortality. The pathophysiology of coagulopathy involves fibrinolytic system impairment and vascular endothelial damage. This study examined coagulation and fibrinolytic markers as outcome predictors. In an observational study of 164 COVID-19 patients admitted to our emergency intensive care unit, hematological parameters on days 1, 3, 5, and 7 were retrospectively compared between survivors and nonsurvivors. Nonsurvivors had a higher APACHE II score, SOFA score, and age than survivors. Nonsurvivors also had a significantly lower platelet count and significantly higher plasmin/α2plasmin inhibitor complex (PIC), tissue plasminogen activator/plasminogen activator inhibitor-1 complex (tPAPAI-1C), D-dimer, and fibrin/fibrinogen degradation product (FDP) levels than survivors throughout the measurement period. The 7-day maximum or minimum values of the tPAPAI-1C, FDP, and D-dimer levels were significantly higher in nonsurvivors. A multivariate logistic regression analysis showed that the maximum tPAPAI-1C (OR = 1.034; 95% CI,1.014-1.061; p = 0.0041) was an independent factor affecting mortality, with an area under the curve (AUC) of 0.713 (optimum cut-off of 51 ng/mL; sensitivity, 69.2%; and specificity, 68.4%). COVID-19 patients with poor outcomes exhibit exacerbated coagulopathy with fibrinolysis inhibition and endothelial damage. Consequently, plasma tPAPAI-1C might be a useful predictor of the prognosis in patients with severe or critical COVID-19.

3.
Open Forum Infect Dis ; 9(9): ofac427, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2212860

ABSTRACT

In this study, abnormal levels of myeloid activation, endothelial damage, and innate immune markers were associated with severe coronavirus disease 2019 (COVID-19), while higher levels of metabolic biomarkers (irisin, leptin) demonstrated a protective effect. These data support a model for COVID-19 immunopathogenesis linking robust inflammation and endothelial damage in metabolically predisposed individuals.

4.
Front Immunol ; 13: 830061, 2022.
Article in English | MEDLINE | ID: covidwho-2198803

ABSTRACT

Introduction: Resistin is reported to form a cytokine network and cause endothelial damage. The pathogenesis of coronavirus disease 2019 (COVID-19) remains unknown, but the association between cytokine storm and endothelial damage is crucial. This study aimed to evaluate resistin in COVID-19 pathogenesis compared with sepsis. Materials and Methods: First, we evaluated the association of plasma resistin levels and disease severity and clinical outcome in two large cohorts: a publicly available cohort including 306 COVID-19 patients in the United States (MGH cohort) and our original cohort including only intubated 113 patients in Japan (Osaka cohort 1). Second, to understand pathogenesis, we evaluate resistin, cytokines and endothelial cell adhesion molecules in COVID-19 compared with sepsis. Blood samples were collected from 62 ICU-treated COVID-19 patients and 38 sepsis patients on day 1 (day of ICU admission), days 2-3, days 6-8, and from 18 healthy controls (Osaka cohort 2). The plasma resistin, inflammatory cytokines (IL-6, IL-8, MCP-1 and IL-10) and endothelial cell adhesion molecules (ICAM-1 and VCAM-1) were compared between patients and control. Correlations among resistin, inflammatory cytokines and endothelial cell adhesion molecules were evaluated in COVID-19 and sepsis. Results: In the MGH cohort, the day 1 resistin levels were associated with disease severity score. The non-survivors showed significantly greater resistin levels than survivors on days 1, 4 and 8. In the Osaka cohort 1, 28-day non-survivors showed significantly higher resistin levels than 28-day survivors on days 6-8. Patients with late recovery (defined as the day of weaning off mechanical ventilation >12 or death) had significantly higher resistin levels than those with early recovery on day 1 and days 6-8. In the Osaka cohort 2, plasma resistin levels were elevated in COVID-19 and sepsis patients compared to controls at all measurement points and were associated with inflammatory cytokines and endothelial cell adhesion molecules. Conclusion: Resistin was elevated in COVID-19 patients and was associated with cytokines and endothelial cell adhesion molecules. Higher resistin levels were related to worse outcome.


Subject(s)
COVID-19 , Sepsis , Cytokines , Humans , Resistin , Sepsis/metabolism , Vascular Cell Adhesion Molecule-1
5.
Adv Exp Med Biol ; 1395: 105-109, 2022.
Article in English | MEDLINE | ID: covidwho-2173625

ABSTRACT

BACKGROUND: COVID-19 induces robust systemic inflammation. Patients with cardiovascular disease (CVD) are at an increased risk of death. However, much effort is being spent to identify possible predictors of negative outcomes in order to have a more specific clinical setting. CVD scores are a useful tool in evaluating risk of cardiovascular events. AIM: We evaluated oxygenation and characteristics in COVID-19 patients according to cardiovascular risk stratification performed using the Framingham risk score (FRS) for cardiovascular disease. MATERIALS AND METHODS: We evaluated 155 COVID-19 patients (110 males and 45 females, aged 67.43 ± 14.72 years). All patients underwent a complete physical examination, chest imaging, laboratory tests and blood gas analysis at the time of diagnosis. Seventeen patients died (10 males and 7 females, aged 74.71 ± 7.23 years) while the remaining 138 patients (100 males and 38 females, aged 66.07 ± 15.16 years) were alive at discharge. RESULTS: Deceased patients have an increased FRS compared to those that survived (27.37 ± 5.03 vs. 21.33 ± 9.49, p < 0.05). Compared to survivors, the deceased group presents with a significant increase in white blood cells (p < 0.05) and D-dimers (p < 0.05). There was no difference in pCO2, SO2, and in alveolar arteriolar oxygen difference (A-aDO2). On the contrary, in deceased patients there was an increased pO2 (p < 0.05) and a decreased ratio between oxygen inspired and pO2 (P/F; p < 0.05). FRS shows a negative correlation to P/F (r = 0.42, p < 0.05) in the deceased while no correlation was found in the survivors. No other correlation has been found with blood gas parameters or in the inflammation parameters evaluated in the two groups. DISCUSSION: CVD may be considered as a major risk factor for death in COVID-19 patients. The increased risk relates to a reduced lung capacity but it is not related to blood gas values. Similarly, CV risk score results are independent from the inflammatory status of the patients.


Subject(s)
COVID-19 , Cardiovascular Diseases , Male , Female , Humans , Cardiovascular Diseases/diagnosis , Risk Factors , Pulmonary Gas Exchange , Heart Disease Risk Factors , Inflammation
6.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2082150

ABSTRACT

The serious clinical course of SARS-CoV-2 infection is usually accompanied by acute kidney injury (AKI), worsening prognosis and increasing mortality. AKI in COVID-19 is above all a consequence of systemic dysregulations leading to inflammation, thrombosis, vascular endothelial damage and necrosis. All these processes rely on the interactions between innate immunity elements, including circulating blood cells, resident renal cells, their cytokine products, complement systems, coagulation cascades and contact systems. Numerous simultaneous pathways of innate immunity should secure an effective host defense. Since they all form a network of cross-linked auto-amplification loops, uncontrolled activation is possible. When the actions of selected pathways amplify, cascade activation evades control and the propagation of inflammation and necrosis worsens, accompanied by complement overactivity and immunothrombosis. The systemic activation of innate immunity reaches the kidney, where the damage affecting single tubular cells spreads through tissue collateral damage and triggers AKI. This review is an attempt to synthetize the connections between innate immunity components engaged in COVID-19-related AKI and to summarize the knowledge on the pathophysiological background of processes responsible for renal damage.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , SARS-CoV-2 , Acute Kidney Injury/complications , Immunity, Innate , Inflammation , Complement System Proteins , Necrosis , Cytokines
7.
Hum Cell ; 35(6): 1633-1639, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2014580

ABSTRACT

Endothelial dysfunction is one of the key cornerstone complications of emerging and re-emerging viruses which lead to vascular leakage and a high mortality rate. The mechanism that regulates the origin of endothelial dysregulation is not completely elucidated. Currently, there are no potential pharmacological treatments and curable management for such diseases. In this sense, mesenchymal stromal/stem cells (MSCs) has been emerging to be a promising therapeutic strategy in restoring endothelial barrier function in various lung disease, including ALI and ARDS. The mechanism of the role of MSCs in restoring endothelial integrity among single-strand RNA (ssRNA) viruses that target endothelial cells remains elusive. Thus, we have discussed the therapeutic role of MSCs in restoring vascular integrity by (i) inhibiting the metalloprotease activity thereby preventing the cleavage of tight junction proteins, which are essential for maintaining membrane integrity (ii) possessing antioxidant properties which neutralize the excessive ROS production due to virus infection and its associated hyper host immune response (iii) modulating micro RNAs that regulate the endothelial activation and its integrity by downregulating the inflammatory response during ssRNA infection.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Virus Diseases , Antioxidants/metabolism , Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/physiology , Metalloproteases/metabolism , RNA , Reactive Oxygen Species/metabolism , Tight Junction Proteins/metabolism , Virus Diseases/metabolism
8.
Eur J Ophthalmol ; 32(6): 3574-3583, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1691091

ABSTRACT

BACKGROUND: Endothelium damage is a crucial element in the pathogenesis of SARS-Cov-2 infection. Most casualties in critical COVID-19 cases are due to ARDS, diffuse coagulopathy and cytokine storm. ARDS itself is a consequence of pulmonary endothelial cells damage. Damage to retinal capillary microcirculation in post-infective period has been investigated through Optical Coherence Tomography Angiography (OCTA). The aim of the present study is to find a correlation between signs of retinal vascular damage and pulmonary impairment. METHODS: Patients admitted to hospital and subsequently recovered from COVID-19 infection were summoned 1 month later to undergo coherence tomography (CT) scan and OCTA examination. RESULTS: The study population included 87 COVID-19 patients with a mean age of 54.28 ± 14.44 years. Oxygen therapy, non-invasive and invasive mechanical ventilation were necessary in 33, 11 and 4 patients respectively to provide respiratory support during the acute course of the disease. Pulmonary involvement interested 54 patients (62.1%). Peripheral (27.6%) or diffuse (29.9%) involvement and ground glass (GG) opacities (47.1%) represented the prevalent radiological finding. A reduced RCPI FI was independently correlated with the presence of reticulation pattern in CT scan (p = .019). Also, RNFL and GCC were thinner in patients who displayed reticulation pattern (respectively p = .025 and p = .015). CONCLUSIONS: A reduction in RPCP-FI and RNFL and GCC thickness were independently correlated to the presence of CT reticulation pattern. This association can reflect cytokine induced remodeling in both organs as a consequence of systemic endothelial damage and inflammation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Aged , COVID-19/complications , Cytokines , Endothelial Cells , Humans , Middle Aged , Oxygen , Retinal Vessels , SARS-CoV-2 , Tomography, Optical Coherence/methods
9.
MedComm (2020) ; 2(4): 531-547, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1469531

ABSTRACT

The number of coronavirus disease 2019 (COVID-19) cases has been increasing significantly, and the disease has evolved into a global pandemic, posing an unprecedented challenge to the healthcare community. Angiotensin-converting enzyme 2, the binding and entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in hosts, is also expressed on pulmonary vascular endothelium; thus, pulmonary vasculature is a potential target in COVID-19. Indeed, pulmonary vascular thickening is observed by early clinical imaging, implying a tropism of SARS-CoV-2 for pulmonary vasculature. Recent studies reported that COVID-19 is associated with vascular endothelial damage and dysfunction along with inflammation, coagulopathy, and microthrombosis; all of these pathologic changes are the hallmarks of pulmonary vascular diseases. Notwithstanding the not fully elucidated effects of COVID-19 on pulmonary vasculature, the vascular endotheliopathy that occurs after infection is attributed to direct infection and indirect damage mainly caused by renin-angiotensin-aldosterone system imbalance, coagulation cascade, oxidative stress, immune dysregulation, and intussusceptive angiogenesis. Degradation of endothelial glycocalyx exposes endothelial cell (EC) surface receptors to the vascular lumen, which renders pulmonary ECs more susceptible to SARS-CoV-2 infection. The present article reviews the potential pulmonary vascular pathophysiology and clinical presentations in COVID-19 to provide a basis for clinicians and scientists, providing insights into the development of therapeutic strategies targeting pulmonary vasculature.

10.
Clin Chim Acta ; 523: 185-190, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1415246

ABSTRACT

BACKGROUND: Endothelial dysfunction, a major complication of SARS-CoV-2 infectionplaying a key-role in multi-organ damage, carries high risk of mortality. AIM: To investigate the potential role of Mid-Regional pro-Adrenomedullin (MR-proADM) in detecting endothelial damage with a view to stratifying the risk of adverse events (length of stay, death, admission in Intensive Care Unit) and/or disease resolution. MATERIALS AND METHODS: In 135 consecutive patients with SARS-CoV-2 infection, MR-proADM was measured in EDTA-K2 plasma samples using B.R.A.H.M.S. KRYPTOR® COMPACT Plus method (Thermo Fisher Scientific, Hennigsdorf, Germany) RESULTS: Patients were subdivided into three groups based on their MR-proADM value (nmol/L): 1 (n = 20, MR-proADM ≤ 0.55); 2 (n = 82, 0.55 < MR-proADM ≤ 1.50); 3 (n = 33, MR-proADM > 1.50). The higher the MR-proADM value, the greater the patients' age, the more frequent the occurrence of pneumonia, the requiring of more aggressive treatment, the longer the hospitalization and the more frequent a fatal event. Significant differences were found between the three groups for MR-proADM, White-blood cell count, Neutrophil count, D-dimer, C-reactive Protein, Procalcitonin and hs-Troponin I. At logistic regression,it was found that MR-proADM and Log10D-dimer were the most significant predictors of adverse events. CONCLUSION: The findings made in the present study highlight the relevance of MR-proADM values in providing clinically useful information, particularly for stratifying COVID-19 patients according to the risk of a more severe form of disease and to the development of adverse events.


Subject(s)
Adrenomedullin , COVID-19 , Endothelium/physiopathology , Protein Precursors , Adrenomedullin/blood , Biomarkers , COVID-19/diagnosis , Endothelium/virology , Humans , Prognosis , Protein Precursors/blood , SARS-CoV-2
11.
Viruses ; 13(9)2021 08 29.
Article in English | MEDLINE | ID: covidwho-1374540

ABSTRACT

A relationship is emerging between SARS-CoV-2 infections and ANCA-associated vasculitis (AAV) because: (i) the pulmonary involvement of COVID-19 may mimic that observed in patients with AAV; (ii) the two diseases may occur together; (iii) COVID-19 may trigger AAV. However, few cases of AAV have been identified so far in COVID-19 patients. To define the frequency of ANCA autoimmunity in patients with SARS-CoV-2 infection, we analyzed the serum ANCAs and the serum PR3 and MPO antigens by immunoassays in 124 adult patients with a diagnosis of SARS-CoV-2 infection (16 were asymptomatic and 108 were hospitalized) and 48 control subjects. The serum ANCAs were significantly higher in the hospitalized patients compared with either the controls or the asymptomatic patients and increased with the progression of the COVID-19 severity. After one week of hospitalization, the values were significantly lower. In contrast, no differences emerged among the controls, asymptomatic and hospitalized patients for the PR3 and MPO serum levels. None of the patients had clinical signs of AAV with the exception of a severe pulmonary involvement. Further studies are necessary to define whether the increase in the serum ANCAs might mask subclinical vasculitis in a percentage of patients with SARS-CoV-2 infection or it is an epiphenomenon of SARS-CoV-2 infection with no clinical manifestations.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic/blood , COVID-19/blood , COVID-19/virology , SARS-CoV-2 , Adult , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/etiology , COVID-19/diagnosis , COVID-19/immunology , Disease Susceptibility , Female , Humans , Immunoassay , Male , Middle Aged , Pilot Projects , Symptom Assessment
12.
Autoimmun Rev ; 20(10): 102899, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1316386

ABSTRACT

OBJECTIVE: To review similarities between COVID-19 and systemic sclerosis (SSc) early vasculopathy to provide novel insights into both diseases. METHODS: A narrative review of the literature supplemented with expert opinion. RESULTS: There is clear evidence that the endothelium is at the centre stage in SSc and COVID-19, with endothelial cell activation/injury and dysfunction creating the crucial evolving step in the pathogenesis of both diseases. The angiotensin system has also been implicated in the early stages of both COVID-19 and SSc. Autoptic studies provide novel insights into the effects of SARS-CoV-2 on the endothelium. Normal endothelium and endothelial dysfunction in COVID-19 and SSc are discussed. It is debated whether SARS-CoV-2 infection triggers autoimmunity with production of autoantibodies which is of mechanistic interest because other viral illnesses are potentially involved in endothelial dysfunction and in SSc pathogenesis. CONCLUSION: COVID-19 is due to a direct assault of SARS-CoV-2 on the vascular system as an acute infection, whereas SSc remains a chronic/sub-acute autoimmune disease of largely unknown etiology Further study and exploration of the SARS-CoV-2 pathogenic mechanisms might provide further useful milestones in the understanding of the early SSc pathogenesis.


Subject(s)
COVID-19 , Scleroderma, Systemic , Autoantibodies , Autoimmunity , Humans , SARS-CoV-2 , Scleroderma, Systemic/diagnosis
13.
Vasc Biol ; 3(1): R15-R23, 2021.
Article in English | MEDLINE | ID: covidwho-1117768

ABSTRACT

SARS-CoV-2 is the agent responsible for the coronavirus disease (COVID-19), which has been declared a pandemic by the World Health Organization. The clinical evolution of COVID-19 ranges from asymptomatic infection to death. Older people and patients with underlying medical conditions, particularly diabetes, cardiovascular and chronic respiratory diseases are more susceptible to develop severe forms of COVID-19. Significant endothelial damage has been reported in COVID-19 and growing evidence supports the key pathophysiological role of this alteration in the onset and the progression of the disease. In particular, the impaired vascular homeostasis secondary to the structural and functional damage of the endothelium and its main component, the endothelial cells, contributes to the systemic proinflammatory state and the multiorgan involvement observed in COVID-19 patients. This review summarizes the current evidence supporting the proposition that the endothelium is a key target of SARS-CoV-2, with a focus on the molecular mechanisms involved in the interaction between SARS-CoV-2 and endothelial cells.

14.
Stem Cell Res Ther ; 11(1): 508, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-948402

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs), including adipose-derived mesenchymal stem cells (ADSCs), have been shown to attenuate organ damage in acute respiratory distress syndrome (ARDS) and sepsis; however, the underlying mechanisms are not fully understood. In this study, we aimed to explore the potential roles and molecular mechanisms of action of ADSCs in histone-induced endothelial damage. METHODS: Male C57BL/6 N mice were intravenously injected with ADSCs, followed by histones or a vehicle. The mice in each group were assessed for survival, pulmonary vascular permeability, and histological changes. A co-culture model with primary human umbilical vein endothelial cells (HUVECs) exposed to histones was used to clarify the paracrine effect of ADSCs. Overexpression and inhibition of miR-126 ADSCs were also examined as causative factors for endothelial protection. RESULTS: The administration of ADSCs markedly improved survival, inhibited histone-mediated lung hemorrhage and edema, and attenuated vascular hyper-permeability in mice. ADSCs were engrafted in the injured lung and attenuated histone-induced endothelial cell apoptosis. ADSCs showed endothelial protection (via a paracrine effect) and Akt phosphorylation in the histone-exposed HUVECs. Notably, increased Akt phosphorylation by ADSCs was mostly mediated by exosomes in histone-induced cytotoxicity and lung damage. Moreover, the expression of miR-126 was increased in exosomes from histone-exposed ADSCs. Remarkably, the inhibition of miR-126 in ADSCs failed to increase Akt phosphorylation in histone-exposed HUVECs. CONCLUSION: ADSC-derived exosomes may exert protective effects on endothelial cells via activation of the PI3K/Akt pathway.


Subject(s)
Acute Lung Injury , Exosomes , Mesenchymal Stem Cells , Adipose Tissue/metabolism , Animals , Exosomes/metabolism , Histones , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
15.
J Stroke Cerebrovasc Dis ; 29(8): 104941, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-380483

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health threat. Some COVID-19 patients have exhibited widespread neurological manifestations including stroke. Acute ischemic stroke, intracerebral hemorrhage, and cerebral venous sinus thrombosis have been reported in patients with COVID-19. COVID-19-associated coagulopathy is increasingly recognized as a result of acute infection and is likely caused by inflammation, including inflammatory cytokine storm. Recent studies suggest that axonal transport of SARS-CoV-2 to the brain can occur via the cribriform plate adjacent to the olfactory bulb that may lead to symptomatic anosmia. The internalization of SARS-CoV-2 is mediated by the binding of the spike glycoprotein of the virus to the angiotensin-converting enzyme 2 (ACE2) on cellular membranes. ACE2 is expressed in several tissues including lung alveolar cells, gastrointestinal tissue, and brain. The aim of this review is to provide insights into the clinical manifestations and pathophysiological mechanisms of stroke in COVID-19 patients. SARS-CoV-2 can down-regulate ACE2 and, in turn, overactivate the classical renin-angiotensin system (RAS) axis and decrease the activation of the alternative RAS pathway in the brain. The consequent imbalance in vasodilation, neuroinflammation, oxidative stress, and thrombotic response may contribute to the pathophysiology of stroke during SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/pathogenicity , Brain/physiopathology , Coronavirus Infections/physiopathology , Encephalitis, Viral/physiopathology , Pneumonia, Viral/physiopathology , Stroke/physiopathology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/metabolism , Blood Coagulation , Brain/metabolism , Brain/virology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Encephalitis, Viral/epidemiology , Encephalitis, Viral/metabolism , Encephalitis, Viral/virology , Host Microbial Interactions , Humans , Inflammation Mediators/metabolism , Oxidative Stress , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Renin-Angiotensin System , SARS-CoV-2 , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Stroke/epidemiology , Stroke/metabolism , Stroke/virology , Vasodilation , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL